If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+49x-423=0
a = 7; b = 49; c = -423;
Δ = b2-4ac
Δ = 492-4·7·(-423)
Δ = 14245
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(49)-\sqrt{14245}}{2*7}=\frac{-49-\sqrt{14245}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(49)+\sqrt{14245}}{2*7}=\frac{-49+\sqrt{14245}}{14} $
| 3x−5=9x | | 20=-2x+30 | | 2(x-6)+4=4(x=2)-6 | | 30+-2x=20 | | -22+3x+x=46 | | 30b+53=18b−83 | | 5n+4=7(n+1 | | 8x+5(x+5)=7x+7 | | 56-1/x-4=-52 | | -4v+47=5(v+4) | | -2/5y=y | | 2(3y+3)=-10y | | -x-19+4x=11 | | 1/2x-5+3x+17=180 | | 3x-62+5x=50 | | -w/5=-24 | | 5x-9=33 | | -14=5(u-7)-84 | | 5y-5+y+55=8y+50-4y | | 2x-66+4x=48 | | 2/6=x-4/5 | | p+0.08p=1.08p | | 0x+4=7x+9 | | 3x−8=x+12 | | 5y+1.8y=4y-3.2 | | 2^(-c)+1=2^c | | 32=3w=8 | | 2x-x-9=11 | | -15-3x+5x=23 | | 9c-5=17 | | 8×+14=x | | (5-3x)(2x+1)(4x-8)=0 |